
Package: luajr (via r-universe)
October 16, 2024

Type Package

Title 'LuaJIT' Scripting

Version 0.1.8.9000

Description An interface to 'LuaJIT' <https://luajit.org>, a
just-in-time compiler for the 'Lua' scripting language
<https://www.lua.org>. Allows users to run 'Lua' code from 'R'.

URL https://github.com/nicholasdavies/luajr,

https://nicholasdavies.github.io/luajr/

BugReports https://github.com/nicholasdavies/luajr/issues

License MIT + file LICENSE

Encoding UTF-8

SystemRequirements GNU make

Suggests Rcpp, crayon, knitr, rmarkdown, testthat (>= 3.0.0)

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

VignetteBuilder knitr

Config/testthat/edition 3

Repository https://nicholasdavies.r-universe.dev

RemoteUrl https://github.com/nicholasdavies/luajr

RemoteRef HEAD

RemoteSha eb9cdec2dcb6cb27259dba376b090411b194e7bb

Contents
luajr-package . 2
lua . 3
lua_func . 4
lua_mode . 5

1

https://luajit.org
https://www.lua.org
https://github.com/nicholasdavies/luajr
https://nicholasdavies.github.io/luajr/
https://github.com/nicholasdavies/luajr/issues

2 luajr-package

lua_open . 8
lua_parallel . 9
lua_profile . 10
lua_reset . 11
lua_shell . 12

Index 13

luajr-package luajr: LuaJIT Scripting

Description

’luajr’ provides an interface to LuaJIT, a just-in-time compiler for the Lua scripting language. It
allows users to run Lua code from R.

The R API

• lua(): run Lua code

• lua_func(): make a Lua function callable from R

• lua_shell(): run an interactive Lua shell

• lua_open(): create a new Lua state

• lua_reset(): reset the default Lua state

• lua_parallel(): run Lua code in parallel

Further reading

For an introduction to ’luajr’, see vignette("luajr")

Author(s)

Maintainer: Nicholas Davies <nicholas.davies@lshtm.ac.uk> (ORCID) (Author of the R pack-
age wrapper) [contributor, copyright holder]

Authors:

• Mike Pall (Author of the embedded LuaJIT compiler) [copyright holder]

Other contributors:

• Lua.org, PUC-Rio (Copyright holders over portions of Lua source code included in LuaJIT)
[copyright holder]

• Scott Lembcke, Howling Moon Software (Authors of the embedded debugger.lua debugger)
[contributor, copyright holder]

https://luajit.org
https://www.lua.org
https://orcid.org/0000-0002-1740-1412

lua 3

See Also

Useful links:

• https://github.com/nicholasdavies/luajr

• https://nicholasdavies.github.io/luajr/

• Report bugs at https://github.com/nicholasdavies/luajr/issues

lua Run Lua code

Description

Runs the specified Lua code.

Usage

lua(code, filename = NULL, L = NULL)

Arguments

code Lua code block to run.

filename If non-NULL, name of file to run.

L Lua state in which to run the code. NULL (default) uses the default Lua state for
luajr.

Value

Lua value(s) returned by the code block converted to R object(s). Only a subset of all Lua types can
be converted to R objects at present. If multiple values are returned, these are packaged in a list.

Examples

twelve <- lua("return 3*4")
print(twelve)

https://github.com/nicholasdavies/luajr
https://nicholasdavies.github.io/luajr/
https://github.com/nicholasdavies/luajr/issues

4 lua_func

lua_func Make a Lua function callable from R

Description

Takes any Lua expression that evaluates to a function and provides an R function that can be called
to invoke the Lua function.

Usage

lua_func(func, argcode = "s", L = NULL)

Arguments

func Lua expression evaluating to a function.

argcode How to wrap R arguments for the Lua function.

L Lua state in which to run the code. NULL (default) uses the default Lua state for
luajr.

Details

The R types that can be passed to Lua are: NULL, logical vector, integer vector, numeric vector,
string vector, list, external pointer, and raw.

The parameter argcode is a string with one character for each argument of the Lua function, recy-
cled as needed (e.g. so that a single character would apply to all arguments regardless of how many
there are).

In the following, the corresponding character of argcode for a specific argument is referred to as
its argcode.

For NULL or any argument with length 0, the result in Lua is nil regardless of the corresponding
argcode.

For logical, integer, double, and character vectors, if the corresponding argcode is 's' (simplify),
then if the R vector has length one, it is supplied as a Lua primitive (boolean, number, number, or
string, respectively), and if length > 1, as an array, i.e. a table with integer indices starting at 1. If
the code is 'a', the vector is always supplied as an array, even if it only has length 1. If the argcode
is the digit '1' through '9', this is the same as 's', but the vector is required to have that specific
length, otherwise an error message is emitted.

Still focusing on the same vector types, if the argcode is 'r', then the vector is passed by ref-
erence to Lua, adopting the type luajr.logical_r, luajr.integer_r, luajr.numeric_r, or
luajr.character_r as appropriate. If the argcode is 'v', the vector is passed by value to Lua,
adopting the type luajr.logical, luajr.integer, luajr.numeric, or luajr.character as ap-
propriate.

For a raw vector, only the 's' type is accepted and the result in Lua is a string (potentially with
embedded nulls).

For lists, if the argcode is 's' (simplify), the list is passed as a Lua table. Any entries of the list with
non-blank names are named in the table, while unnamed entries have the associated integer key in

lua_mode 5

the table. Note that Lua does not preserve the order of entries in tables. This means that an R list
with names will often go "out of order" when passed into Lua with 's' and then returned back to
R. This is avoided with argcode 'r' or 'v'.

If a list is passed in with the argcode 'r' or 'v', the list is passed to Lua as type luajr.list, and
all vector elements of the list are passed by reference or by value, respectively.

For external pointers, the argcode is ignored and the external pointer is passed to Lua as type user-
data.

When the function is called and Lua values are returned from the function, the Lua return values
are converted to R values as follows.

If nothing is returned, the function returns invisible() (i.e. NULL).

If multiple arguments are returned, a list with all arguments is returned.

Reference types (e.g. luajr.logical_r) and vector types (e.g. luajr.logical) are returned to
R as such. A luajr.list is returned as an R list. Reference and list types respect R attributes set
within Lua code.

A table is returned as a list. In the list, any table entries with a number key come first (with indices
1 to n, i.e. the original number key’s value is discarded), followed by any table entries with a string
key (named accordingly). This may well scramble the order of keys, so beware. Note in particular
that Lua does not guarantee that it will traverse a table in ascending order of keys. Entries with non-
number, non-string keys are discarded. It is probably best to avoid returning a table with anything
other than string keys, or to use luajr.list.

A Lua string with embedded nulls is returned as an R raw type.

Value

An R function which can be called to invoke the Lua function.

Examples

squared <- lua_func("function(x) return x^2 end")
print(squared(7))

lua_mode Debugger, profiler, and JIT options

Description

Run Lua code with the debugger or profiler activated, and control whether the LuaJIT just-in-time
compiler is on.

Usage

lua_mode(expr, debug, profile, jit)

6 lua_mode

Arguments

expr An expression to run with the associated settings. If expr is present, the settings
apply only while expr is being evaluated. If expr is missing, the settings apply
until they are changed by another call to lua_mode().

debug Control the debugger: "step" / "on" / TRUE to step through each line; "error"
to trigger the debugger on a Lua error; "off" / FALSE to switch the debugger
off.

profile Control the profiler: "on" / TRUE to use the profiler’s default settings; a specially
formatted string (see below) to control the profiler’s precision and sampling in-
terval; "off" / FALSE to switch the profiler off.

jit Control LuaJIT’s just-in-time compiler: "on" / TRUE to use the JIT, "off" /
FALSE to use the LuaJIT interpreter only.

Value

When called with no arguments, returns the current settings. When called with expr, calls the value
returned by expr. Otherwise, returns nothing.

Details

This function is experimental. Its interface and behaviour may change in subsequent versions of
luajr.

lua_mode() works in one of three ways, depending on which parameters are provided.

When called with no arguments, lua_mode() returns the current debug, profile, and jit settings.

When called without an expr argument, but with at least one of debug, profile, or jit, the settings
apply for any subsequent executions of Lua code until the settings are changed by another call to
lua_mode().

When called with an expr argument, the settings for debug, profile, and jit are applied tem-
porarily just for the evaluation of expr in the calling frame.

The debugger

The debug setting allows you to run Lua code in debug mode, using Scott Lembcke’s debugger.lua.

Use debug = "step" (or TRUE or "on") to step through each line of the code; use debug = "error"
to trigger the debugger on any Lua error; and turn off the debugger with debug = "off" (or FALSE).

To trigger the debugger from a specific place within your Lua code, you can also call luajr.dbg()
from your Lua code. Within Lua, use luajr.dbg(CONDITION) to trigger debugging only if CONDITION
evaluates to false or nil.

debugger.lua is more fully documented at its github repo page, but briefly, you enter commands
of one character at the debugger.lua> prompt. Use n to step to the next line, q to quit, and h to
show a help page with all the rest of the commands.

https://github.com/slembcke/debugger.lua
https://github.com/slembcke/debugger.lua

lua_mode 7

The profiler

The profile setting allows you to profile your Lua code run, generating information useful for
optimising its execution speed.

Use profile = "on" (or TRUE) to turn on the profiler with default settings (namely, profile at the
line level and sample at 1-millisecond intervals).

Instead of "on", you can pass a string containing any of these options:

• f: enable profiling to the function level.

• l: enable profiling to the line level.
• i<integer>: set the sampling interval, in milliseconds (default: 1ms).

For example, the default options correspond to the string "li1".

You must use lua_profile() to recover the generated profiling data.

JIT options

The jit setting allows you to turn LuaJIT’s just-in-time compiler off (with jit = "off" or FALSE).
The default is for the JIT compiler to be "on" (alias TRUE).

Lua code will generally run more slowly with the JIT off, although there have been issues reported
with LuaJIT running more slowly with the JIT on for processors using ARM64 architecture, which
includes Apple Silicon CPUs.

See Also

lua_profile() for extracting the generated profiling data.

Examples

Not run:
Debugger in "one-shot" mode
lua_mode(debug = "on",

sum <- lua("
local s = 0
for i = 1,10 do

s = s + i
end
return s

")
)

Profiler in "switch on / switch off" mode
lua_mode(profile = TRUE)
pointless_computation = lua_func(
"function()

local s = startval
for i = 1,10^8 do

s = math.sin(s)
s = math.exp(s^2)
s = s + 1

8 lua_open

end
return s

end")
lua("startval = 100")
pointless_computation()
lua_mode(profile = FALSE)
lua_profile()

Turn off JIT and turn it on again
lua_mode(jit = "off")
lua_mode(jit = "on")

End(Not run)

lua_open Create a new Lua state

Description

Creates a new, empty Lua state and returns an external pointer wrapping that state.

Usage

lua_open()

Details

All Lua code is executed within a given Lua state. A Lua state is similar to the global environment
in R, in that it is where all variables and functions are defined. luajr automatically maintains a
"default" Lua state, so most users of luajr will not need to use lua_open().

However, if for whatever reason you want to maintain multiple different Lua states at a time, each
with their own independent global variables and functions, lua_open() can be used to create a new
Lua state which can then be passed to lua(), lua_func() and lua_shell() via the L parameter.
These functions will then operate within that Lua state instead of the default one. The default Lua
state can be specified explicitly with L = NULL.

Note that there is currently no way (provided by luajr) of saving a Lua state to disk so that the
state can be restarted later. Also, there is no lua_close in luajr because Lua states are closed
automatically when they are garbage collected in R.

Value

External pointer wrapping the newly created Lua state.

lua_parallel 9

Examples

L1 <- lua_open()
lua("a = 2")
lua("a = 4", L = L1)
lua("print(a)") # 2
lua("print(a)", L = L1) # 4

lua_parallel Run Lua code in parallel

Description

Runs a Lua function multiple times, with function runs divided among multiple threads.

Usage

lua_parallel(func, n, threads, pre = NA_character_)

Arguments

func Lua expression evaluating to a function.

n Number of function executions.

threads Number of threads to create, or a list of existing Lua states (e.g. as created by
lua_open()), all different, one for each thread.

pre Lua code block to run once for each thread at creation.

Details

This function is experimental. Its interface and behaviour are likely to change in subsequent ver-
sions of luajr.

lua_parallel() works as follows. A number threads of new Lua states is created with the
standard Lua libraries and the luajr module opened in each (i.e. as though the states were created
using lua_open()). Then, a thread is launched for each state. Within each thread, the code in pre
is run in the corresponding Lua state. Then, func(i) is called for each i in 1:n, with the calls
spread across the states. Finally, the Lua states are closed and the results are returned in a list. The
list elements are returned in the correct order, i.e. the ordering of the returned list does not depend
on the actual execution order of each call to func.

Instead of an integer, threads can be a list of Lua states, e.g. NULL for the default Lua state or a
state returned by lua_open(). This saves the time needed to open the new states, which takes a few
milliseconds.

Value

List of n values returned from the Lua function func.

10 lua_profile

Safety and performance

Note that func has to be thread-safe. All pure Lua code and built-in Lua library functions are
thread-safe, except for certain functions in the built-in os and io libraries (search for "thread safe"
in the Lua 5.2 reference manual).

Additionally, use of luajr reference types is not thread-safe because these use R to allocate and man-
age memory, and R is not thread-safe. This means that you cannot safely use luajr.logical_r,
luajr.integer_r, luajr.numeric_r, luajr.character_r, or other reference types within func.
luajr.list and luajr.dataframe are fine, provided the list entries / dataframe columns are value
types.

There is overhead associated with creating new Lua states and with gathering all the function results
in an R list. It is advisable to check whether running your Lua code in parallel actually gives a
substantial speed increase.

Examples

lua_parallel("function(i) return i end", n = 4, threads = 2)

lua_profile Get profiling data

Description

After running Lua code with the profiler active (using lua_mode()), use this function to get the
profiling data that has been collected.

Usage

lua_profile(flush = TRUE)

Arguments

flush If TRUE, clears the internal profile data buffer (default); if FALSE, doesn’t. (Set
to FALSE if you want to ’peek’ at the profiling data collected so far, but you want
to collect more data to add to this later.)

Details

This function is experimental. Its interface and behaviour may change in subsequent versions of
luajr.

Value

An object of class "lua_profile".

See Also

lua_mode() for generating the profiling data.

https://www.lua.org/manual/5.2/manual.html

lua_reset 11

Examples

Not run:
lua_mode(profile = TRUE)
pointless_computation = lua_func(
"function()

local s = startval
for i = 1,10^8 do

s = math.sin(s)
s = math.exp(s^2)
s = s + 1

end
return s

end")
lua("startval = 100")
pointless_computation()
lua_mode(profile = FALSE)

prof = lua_profile()

End(Not run)

lua_reset Reset the default Lua state

Description

Clears out all variables from the default Lua state, freeing up the associated memory.

Usage

lua_reset()

Details

This resets the default Lua state only. To reset a non-default Lua state L returned by lua_open(),
just do L <- lua_open() again. The memory previously used will be cleaned up at the next garbage
collection.

Value

None.

Examples

lua("a = 2")
lua_reset()
lua("print(a)") # nil

12 lua_shell

lua_shell Run an interactive Lua shell

Description

When in interactive mode, provides a basic read-eval-print loop with LuaJIT.

Usage

lua_shell(L = NULL)

Arguments

L Lua state in which to run the code. NULL (default) uses the default Lua state for
luajr.

Details

Enter an empty line to return to R.

As a convenience, lines starting with an equals sign have the "=" replaced with "return ", so that
e.g. entering =x will show the value of x as returned to R.

Value

None.

Index

lua, 3
Lua state, 3, 4, 11, 12
lua(), 2, 8
lua_func, 4
lua_func(), 2, 8
lua_mode, 5
lua_mode(), 6, 10
lua_open, 8
lua_open(), 2, 8, 9, 11
lua_parallel, 9
lua_parallel(), 2, 9
lua_profile, 10
lua_profile(), 7
lua_reset, 11
lua_reset(), 2
lua_shell, 12
lua_shell(), 2, 8
luajr (luajr-package), 2
luajr-package, 2

13

	luajr-package
	lua
	lua_func
	lua_mode
	lua_open
	lua_parallel
	lua_profile
	lua_reset
	lua_shell
	Index

